Prof. Banerjee's Practice MT Solns
 Aaron Chen

Spring 2016 Math 2E

Problem 1

a) Find the Jacobian of the transformation $x=\ln (u v), y=u^{2} v$.

$$
\rightarrow \quad J=\operatorname{det}\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
\frac{v}{u v} & \frac{u}{u v} \\
2 u v & u^{2}
\end{array}\right]=u-2 u=-u
$$

But, note that if we were to use the Jacobian in an integral, we would use $|J|=|-u|$.
b) Show that if $\nabla f=\nabla g$, then $f=g+c$ where c is a constant.
\rightarrow We see $\nabla(f-g)=0$ then. But only gradients of constants yield zero so hence $f-g=c$ where c is a constant, and rearranging, $f=g+c$.

Problem 2

a) Convert from spherical to rectangular coordinates the point $(2, \pi / 4, \pi / 3)$.
\rightarrow It's not specified, but I think $\rho=2, \theta=\pi / 4, \phi=\pi / 3$. Then,

$$
\left\{\begin{array}{l}
x=2 \cos \pi / 4 \sin \pi / 3=2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}=\sqrt{\frac{3}{2}} \\
y=2 \sin \pi / 4 \sin \pi / 3=(\text { same })=\sqrt{\frac{3}{2}} \\
z=2 \cos \pi / 3=2 \cdot \frac{1}{2}=1 .
\end{array}\right.
$$

b) Express in cylindrical coordinates $y+z=2 z^{2}$.
\rightarrow In cylindrical, z doesn't change, but $y=r \sin \theta$ so we have $r \sin \theta+z=2 z^{2}$.
If necessary, we can complete the square: $y=2 z^{2}-z=2\left(z-\frac{1}{4}\right)^{2}-\frac{1}{8}$ so then $2\left(z-\frac{1}{4}\right)^{2}=r \sin \theta+\frac{1}{8}$. Then we see $z=\frac{1}{4} \pm \sqrt{\frac{r}{2} \sin \theta+\frac{1}{16}}$. But I think this shouldn't be necessary...

Problem 3

Find the volume between the paraboloid $z=6-x^{2}-y^{2}$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
\rightarrow The two surfaces intersect as a circle (if we draw it). To find the curve of intersection, one way is to substitute $z=\sqrt{x^{2}+y^{2}} \Longleftrightarrow x^{2}+y^{2}=z^{2}$ into the paraboloid, and we see

$$
z=6-z^{2} \Longleftrightarrow z^{2}+z-6=0 \Longleftrightarrow(z+3)(z-2)=0, z=2,-3
$$

They must intersect at $z=2$, not the negative one. And, at $z=2$, we see we have $2=$ $\sqrt{x^{2}+y^{2}} \Longleftrightarrow x^{2}+y^{2}=4$, a circle of radius two. Hence, our $x y$ domain is everything inside this circle. We can now set up the volume,

$$
V=\iint_{\text {Disc of Radius } 2} \int_{z=\sqrt{x^{2}+y^{2}}}^{6-x^{2}-y^{2}} 1 d z d A_{x y}
$$

and we should use cylindrical because of the disc domain,

$$
=\int_{\theta=0}^{2 \pi} \int_{r=0}^{2} \int_{z=r}^{6-r^{2}} r d z d r d \theta
$$

and now we compute,

$$
=\int_{0}^{2 \pi} \int_{0}^{2} r\left(6-r^{2}-r\right) d r d \theta=\left.\int_{0}^{2 \pi}\left[3 r^{2}-\frac{r^{4}}{4}-\frac{r^{3}}{3}\right]\right|_{0} ^{2} d \theta
$$

this integral is θ-independent,

$$
=2 \pi\left[12-4-\frac{8}{3}\right]=2 \pi \frac{24-8}{3}=\frac{32 \pi}{3} .
$$

Problem 4

Let the vector field $F(x, y, z)=<x, y, z>$. Let C be parameterized by $r(t)=<x(t), y(t), z(t)>$ from time $a \leq t \leq b$, where also $|r(t)|=$ constant. Show that $\int_{C} F \cdot d r=0$.

Proof. First, following definitions, for the line integral, we need $r^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)>$. Then,

$$
\int_{C} F \cdot d r=\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t=\int_{a}^{b}\left[x(t) x^{\prime}(t)+y(t) y^{\prime}(t)+z(t) z^{\prime}(t)\right] d t .
$$

Next, note that if $|r(t)|=$ constant, then $|r(t)|^{2}=$ constant too. Thus,

$$
|r(t)|^{2}=x(t)^{2}+y(t)^{2}+z(t)^{2}=\text { constant } .
$$

Hence, looking at the inside of the integral, which looks like the derivative of $|r(t)|^{2}$, we see that

$$
\frac{d}{d t}|r(t)|^{2}=\frac{d}{d t}(\text { constant })=0, \Longleftrightarrow 2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)+2 z(t) z^{\prime}(t)=0
$$

In other words, since $|r(t)|=$ constant, $x(t) x^{\prime}(t)+y(t) y^{\prime}(t)+z(t) z^{\prime}(t)=0$. This is exactly the integrand of the line integral, so we have that

$$
\int_{C} F \cdot d r=\int_{a}^{b}\left[x(t) x^{\prime}(t)+y(t) y^{\prime}(t)+z(t) z^{\prime}(t)\right] d t=\int_{a}^{b} 0 d t=0 .
$$

(And we are done with the proof)

Problem 5

Let $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
a) Show that $I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y$
\rightarrow Mainly, $e^{-x^{2}-y^{2}}=e^{-x^{2}} e^{-y^{2}}$. Then, the integral separates,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y=\int_{-\infty}^{\infty} e^{-y^{2}} d y \int_{-\infty}^{\infty} e^{-x^{2}} d x=I \cdot I=I^{2}
$$

b) Use polar to evaluate (a) and hence find the value of I.
\rightarrow In polar, if we do x, y from $-\infty$ to ∞, this means $0 \leq r \leq \infty$ and $0 \leq \theta \leq 2 \pi$. So, in polar:

$$
\begin{gathered}
I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \stackrel{\theta-\text { indep }}{=} \int_{0}^{\infty} 2 \pi r e^{-r^{2}} d r \\
u=r^{2}, \stackrel{d u=2 r d r}{=} \int_{0}^{\infty} \pi e^{-u} d u=-\left.\pi e^{-u}\right|_{0} ^{\infty} \\
=\pi\left(e^{0}-\lim _{u \rightarrow \infty} e^{-u}\right)=\pi(1-0)=\pi .
\end{gathered}
$$

Since $I^{2}=\pi$, we infer $I=\sqrt{\pi}$. Don't forget that $d V=r d z d r d \theta$ in cylindrical!

Problem 6

I want to write this problem in different notation:
Let E be a region in the $x y$ plane. Let $T(x, y)=(x+y, x-y)$. Show that the area of $T(E)=$ $\{T(x, y):(x, y) \in E\}$ is twice the area of E.

Proof. First. the idea is that T induces a change of variable $u=x+y, v=x-y$ and $T(E)$ is the $u v$ domain that E transforms into. If we were to compute the area of E in these new $u v$ coordinates, we would need to (i) change the domain and (ii) get the Jacobian first. The domain E changes to $T(E)$ so we are done with step (i). For the Jacobian, we first need to solve x, y as functions of u, v. One way is to add both equations to get that $u+v=2 x$, and then subtract the equations to get $u-v=2 y$ so we have

$$
x=\frac{1}{2}(u+v), y=\frac{1}{2}(u-v) .
$$

Then,

$$
J=\operatorname{det}\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]=-1 / 4-1 / 4=-1 / 2 .
$$

Therefore, if we were to calculate the area of E as an integral in $u v$ variables,

$$
\operatorname{Area}(E)=\iint_{E} 1 d A=\iint_{T(E)} 1|J| d u d v=\iint_{T(E)} \frac{1}{2} d u d v
$$

But the right side is exactly $\frac{1}{2} \cdot \operatorname{Area}(T(E))$. Hence, $\operatorname{Area}(E)=\frac{1}{2} \operatorname{Area}(T(E))$ or in other words, $\operatorname{Area}(T(E))=2 \cdot \operatorname{Area}(E)$.

Problem 7

Evaluate $\int_{C} y d x+z d y+x d z$ where C is parameterized by $x=\sqrt{t}, y=t, z=t^{2}$ from $1 \leq t \leq 4$.
\rightarrow First, we need the derivatives, $x^{\prime}(t)=\frac{1}{2 \sqrt{t}}, y^{\prime}(t)=1, z^{\prime}(t)=2 t$. Thus,

$$
\begin{gathered}
\int_{C} y d x+z d y+x d z=\int_{1}^{4} t\left(\frac{1}{2 \sqrt{t}} d t\right)+t^{2}(1 d t)+\sqrt{t}(2 t d t) \\
=\int_{1}^{4} \frac{\sqrt{t}}{2} d t+t^{2} d t+2 t^{3 / 2} d t \\
=\frac{t^{3 / 2}}{3}+\frac{t^{3}}{3}+\left.\frac{4 t^{5 / 2}}{5}\right|_{1} ^{4}
\end{gathered}
$$

which we can evaluate if necessary.

Problem 8

Evaluate $\iiint_{E} y e^{x^{2}+y^{2}+z^{2}} d V$ where E is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ in the 1 st octant.
\rightarrow We have spherical objects, so we should use spherical coordinates. First, the function becomes

$$
y e^{x^{2}+y^{2}+z^{2}}=\rho \sin \theta \sin \phi \cdot e^{\rho^{2}} .
$$

Next, to get the right bounds for the 1st octant, where $x, y, z>0$, we see that $0 \leq \rho \leq 1$ from the unit ball equation (which reads as $\rho^{2} \leq 1$), that $0 \leq \theta \leq \pi / 2$ because we have $x, y>0$, and lastly that $0 \leq \phi \leq \pi / 2$ because $z \geq 0$. Now our integral reads as (don't forget what $d V$ is in spherical!):

$$
\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \int_{\rho=0}^{1} \rho \sin \theta \sin \phi e^{\rho^{2}} \cdot \rho^{2} \sin \phi d \rho d \theta d \phi=\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \int_{\rho=0}^{1} \rho^{3} e^{\rho^{2}} \sin \theta \sin ^{2} \phi d \rho d \theta d \phi .
$$

The $e^{\rho^{2}}$ is problematic, so we need to set $w=\rho^{2}, d w=2 \rho d \rho$ as a substitution. Then, the idea is that $e^{\rho^{2}}=e^{w}$, and one power of the ρ^{3} term cancels from $d w=2 \rho d \rho$ so we are just left with $\frac{\rho^{2}}{2}=w / 2$. So we have

$$
=\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \int_{w=0}^{1} w e^{w} \sin \theta \sin ^{2} \phi \frac{d w}{2} d \theta d \phi
$$

where now integrating by parts, with $u=w, d v=e^{w} d w$,

$$
\begin{gathered}
=\frac{1}{2} \int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \sin ^{2} \phi \sin \theta\left[\left.w e^{w}\right|_{0} ^{1}-\int_{0}^{1} e^{w} d w\right] d \theta d \phi \\
=\frac{1}{2} \int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \sin ^{2} \phi \sin \theta\left[\left(e^{1}-0\right)-\left(e^{1}-1\right)\right] d \theta d \phi \quad\left(\text { used } 1=e^{0}\right) \\
=\frac{1}{2} \int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \sin ^{2} \phi \sin \theta d \theta d \phi=\frac{1}{2} \int_{\phi=0}^{\pi / 2} \frac{1}{2}(1-\cos 2 \phi) \cdot\left(-\left.\cos \theta\right|_{0} ^{\pi / 2}\right) d \phi \\
=\frac{1}{4} \int_{0}^{\pi / 2}(1-\cos 2 \phi) d \phi=\left.\frac{1}{4}\left[\phi-\frac{\sin 2 \phi}{2}\right]\right|_{0} ^{\pi / 2}=\frac{\pi}{8} .
\end{gathered}
$$

